Incorporating the Zebrafish Embryo Teratogenicity Assay Into the Drug Discovery Process

Jedd Hillegass, Ph.D.

Senior Toxicologist

Lampire Biological Laboratories, Inc.

Pipersville, PA, USA

Zebrafish as a Model of Development

- Can be stimulated to breed year-round under proper photoperiod
- Fertilization and development occur ex utero and organogenesis takes only 2-3 days
- Embryos are small and therefore amenable to array screening
- Chorion/embryo are translucent, facilitating morphological assessment
- Good conservation of embryological processes and molecular pathways (possess orthologs to ~86% of human drug targets)
- Fully sequenced genome
- Model aligns well with the initiative to reduce, refine, and replace

Developmental Staging Series

G	
	Control (Contro
H	

Stage Name	Timing (hpf)
Zygote	0-0.75
Cleavage	0.75-2.25
Blastula	2.25-5.25
Gastrula	5.25-10.33
Segmentation	10.33-24
Pharyngula	24-48
Hatching	48-72
Larval	>96

Drug Development: Opportunities for In Vitro Testing

- Suggested that for every 10,000 new molecular entities developed, only 1 will make it to market
 - Timeline from conceptualization to market: 10 years
 - R&D investment: \$800 million >\$1 billion
- Teratogenicity findings are responsible for a significant portion of safety related pipeline attrition
- Teratogenicity studies typically occur at the end of preclinical safety studies or during Phase I clinical trials
- Opportunities exits to incorporate in vitro developmental toxicity studies early in the drug discovery process to proactively identify compounds with teratogenic liability

Developmental Toxicology: In Vivo Assays

- Mammalian studies:
 - Segment I: Assess fertility in males and females (rats)
 - Segment II: Assess developmental toxicity/embryotoxicity (rats and rabbits)
 - Segment III: Assess perinatal toxicity (rats)
- Segment II protocol example (rabbits)*:

Maternal	Developmental
Body weight	Implantation
Food consumption	Resorption rate
Physical signs	Fetal weight
Gross lesions	External, visceral, skeletal alterations

Developmental Toxicology: In Vitro Assays

- Why consider *in vitro* alternatives for safety assessment?
 - Less expensive
 - Higher throughput
 - Compliance with REACH legislation
 - Alignment with 3 R's: Reduce, Refine, Replace
- Several rodent based assays:
 - Rodent whole embryo culture
 - Mouse embryonic stem cell test
 - Rodent micromass assay

 Zebrafish, which have been used extensively in ecotoxicology and developmental genetics research, are gaining popularity as a model for developmental toxicity assessment

Zebrafish as a Developmental Toxicology Model

- No harmonized method exists, although the several models that have been described share the following:
 - Compounds administered at same developmental stage as in mammalian teratology studies with morphology assessed at fetal-stage equivalent
 - Assessment of both viability and morphological alterations
 - Morphological assessment performed via quantitative and/or qualitative measures (i.e., score system)
 - Define a "teratogenic index", typically a ratio between the concentration causing general toxicity and the concentration producing the lowest or no adverse effect
- Zebrafish can detect both direct acting teratogens and proteratogens that require metabolic activation
 - Bioactivation via cytochrome P450 enzymes
 - Addition of exogenous mammalian metabolic activation system (microsomes)

General Protocol

- Brannen, et al. 2010. Development of a Zebrafish Embryo Teratogenicity Assay and Quantitative Prediction Model. Birth Defects Research (Part B) 89: 66-77
- Purpose: Develop a zebrafish assay allowing for characterization of teratogenicity as it relates to specific abnormalities and concentration-response via screening of 31 known in vivo teratogens and non-teratogens

Protocol – Brannen et al., 2010

- Adult zebrafish are placed together in a 2:1 female:male ratio to facilitate breeding, and breeding is stimulated by photoperiod and addition of marbles to bottom of tanks → harvested early morning
- The outer membrane (chorion) is removed via protease treatment and microdissection to facilitate compound delivery
- At 4-6 hours post fertilization (hpf) embryos are cultured in the compound of interest along with a vehicle control
 - N = 12 embryos/dose
 - Typical dose range: 0.1, 1, 10, 100 μM (4 doses minimum)
- At 5 days post fertilization (dpf), viability is assessed (N = 12) and embryos are scored for developmental defects (N = 6)

Endpoints and Scoring

- Larval length/shape
- Motility
- Cardiovascular function
- Pigmentation
- Organs
- Morphology:
 - Body shape
 - Somites
 - Notochord
 - Tail
 - Heart
 - Facial structure
 - Neural tube
 - Arches/jaws

Score	Interpretation
0.5	Structure not evident
1	Severe malformation
2	Moderate malformation
3	Mild malformation
4	Subtle anomaly (growth delay or reversible)
5	Normal morphology

Morphological Scoring Example – Arches/Jaws

Assessment of Teratogenic Liability

LC₂₅:

- Assess N = 12 embryos
- Concentration causing lethality in 25% of the embryos
- Measure of compound toxicity

NOAEL:

- Assess N = 6 embryos
- <u>No Observable Adverse Effect Level</u>
- Generally morphological scores ≥ 4

LC₂₅/NOAEL Ratio:

- ≥ 10 = Positive for teratogenic potential
- ≤ 10 = Negative for teratogenic potential

 Results: Excellent concordance (87%) for classifying in vivo outcome with only 2 false-positives and 2 false-negatives in 31 compounds tested

Additional Uses of the Zebrafish Model

- Hepatotoxicity
- Cardiotoxicity
- Ototoxicity
- Locomotor activity
- Seizures
- Neurotoxicity
- Nephrotoxicity
- Cytotoxicity
- Angiogenesis

Disease Models:

- Cancer
- Epilepsy
- Alzheimer's Disease
- Diabetes
- Huntington's Disease
- Muscular Dystrophy
- Amyotrophic Lateral Sclerosis
- Leukemia
- Cardiomyopathy
- Thrombosis

Conclusions / Future Directions

- Zebrafish teratogenicity assays offer a rapid, cost-effective, accurate assessment of teratogenic liability of discovery stage compounds
- Utilization of these assays could provide a crucial link between high-throughput in vitro screens and in vivo mammalian models
- Despite the zebrafish model gaining popularity in safety assessment research, there exists a continuing need for the following:
 - Testing of additional mammalian teratogens and non-teratogens as a means of assay validation
 - Assay harmonization
 - Incorporation of various imaging techniques capable of morphometry, etc. to facilitate high-throughput screening

Acknowledgements

- Genetic Engineering & Biotechnology News
- Gregory Krug, President, Lampire Biological Laboratories, Inc.
- Lampire Biological Laboratories ZEB Department:
 - Deborah Welham
 - Amy Rank
 - Denielle Wilson
 - Amanda Machin
- Bristol-Myers Squibb Discovery Toxicology Group:
 - Karen Augustine
 - Cindy Zhang
 - Julie Panzica-Kelly