Zebrafish Consortium Update - Phase II Results Published

Submitted by nate on Mon, 02/24/2014 - 10:20

Lampire's continued participation in a multi-pharma consortium, whose goal is to develop a harmonized zebrafish developmental toxicity assay, has resulted in a second publication. This manuscript, which appears in Toxicological Sciences, focuses on the predictivity of this assay in determining the teratogenicity of 38 proprietary pharmaceutical compounds using an optimized protocol.

Abstract: Fishing for Teratogens: A Consortium Effort for a Harmonized Zebrafish Developmental Toxicology Assay.

Ball JS, Stedman DB, Hillegass JM, Zhang CX, Panzica-Kelly J, Coburn A, Enright BP, Tornesi B, Amouzadeh HR, Hetheridge M, Gustafson AL, Augustine-Rauch KA

A consortium of biopharmaceutical companies previously developed an optimized Zebrafish developmental toxicity assay (ZEDTA) where chorionated embryos were exposed to non-proprietary test compounds from 5 to 6 h post fertilization and assessed for morphological integrity at 5 days post fertilization. With the original 20 test compounds, this achieved an overall predictive value for teratogenicity of 88% of mammalian in vivo outcome [Gustafson, A. L., Stedman, D. B., Ball, J., Hillegass, J. M., Flood, A., Zhang, C. X., Panzica-Kelly, J., Cao, J., Coburn, A., Enright, B. P., et al. (2012). Interlaboratory assessment of a harmonized Zebrafish developmental toxicology assay-Progress report on phase I. Reprod. Toxicol. 33, 155-164]. In the second phase of this project, 38 proprietary pharmaceutical compounds from four consortium members were evaluated in two laboratories using the optimized method using either pond-derived or cultivated-strain wild-type Zebrafish embryos at concentrations up to 100μM. Embryo uptake of all compounds was assessed using liquid chromatography-tandem mass spectrometry. Twenty eight of 38 compounds had a confirmed embryo uptake of >5%, and with these compounds the ZEDTA achieved an overall predictive value of 82% and 65% at the two respective laboratories. When low-uptake compounds (≤5%) were retested with logarithmic concentrations up to 1000μM, the overall predictivity across all 38 compounds was 79% and 62% respectively, with the first laboratory achieving 74% sensitivity (teratogen detection) and 82% specificity (non-teratogen detection) and the second laboratory achieving 63% sensitivity (teratogen detection) and 62% specificity (non-teratogen detection). Subsequent data analyses showed that technical differences rather than strain differences were the primary contributor to interlaboratory differences in predictivity. Based on these results, the ZEDTA harmonized methodology is currently being used for compound assessment at lead optimization stage of development by 4/5 of the consortium companies.